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Summary. In this paper we present techniques for deriving inversion algorithms in
medical imaging. To this end we present a few imaging technologies and their math-
ematical models. They essentially consist of integral operators. The reconstruction
is then recognized as the solution of an inverse problem. General strategies, the so-
called approximate inverse, for deriving a solution are adapted. Results from real
data are presented.

1 Introduction

The task in medical imaging is to provide in a non - invasive way information
about the internal structure of the human body. The basic principle is that
the patient is scanned by applying some sort of radiation and its interaction
with the body is measured. This result is the data whose origin has to be
identified. Hence we face an inverse problem.

There are several different imaging techniques and also different ways to
characterize them. For the patient a very substantial difference is whether the
source is inside or outside the body, whether we have emission or transmission
tomography.

From the diagnostic point of view the resulting information is a way to
distinguish the different techniques. Some methods provide information about
the density of the tissue as x-ray computer tomography, ultrasound computer
tomography, or diffuse tomography. A distinction between properties of the
tissues is possible with magnetic resonance imaging and impedance computer
tomography. Finally the localization of activities is possible with biomag-
netism, ( electrical activities ), and emission computer tomography, ( nuclear
activities of injected pharmaceuticals ).

From a physical point of view the applied wavelengths can serve as a clas-
sification. The penetration of electromagnetic waves into the body is sufficient
only for wavelengths smaller than 10−11m or larger than a few cm respectively.
In the extremely short ranges are x rays, single particle emission tomography



2 Alfred K. Louis

and positron emission computer tomography. MRI uses wavelengths larger
than 1m; extremely long waves are used in biomagnetism. In the range of a
few mm to a few cm are microwaves and ultrasound and light.

In this paper we present some principles in designing inversion algorithms
in tomography. We concentrate on linear problems arising in connection with
the Radon and the x-ray transform. In the original 2D x-ray CT problem the
Radon transform served as mathematical model. Here one integrates over lines
and the problem is to recover a function from its line integrals. The same holds
in the 3D x-ray case, but in 3D the Radon transform integrates over planes,
in general over N − 1 - dimensional hyperplanes in IRN . Hence here the so-
called x-ray transform is the mathematical model. Further differences are in
the parametrization of the lines. The 3D - Radon transform merely appears as
tool to derive inversion formula. In the early days of MRI ( magnetic resonance
imaging ), at those days called NMR, nuclear magnetic resonance, it served as
a mathematical model, see for example Marr-Chen-Lauterbur [MCL81], but
then, due to the limitations of computer power in those days one changed the
measuring procedure and scanned the Fourier transform of the searched-for
function in two dimensions. Nowadays the Radon transform reappeared, now
in three and even four dimensions as mathematical model in EPRI ( electron
parametric resonance imaging ) where spectral - spatial information is the
goal, see e.g. Kuppusamy et al [KCSWZ95].

The paper is organized as following. We start with a general principle for
reconstruction information from measured data, the so-called approximate
inverse, see Louis [Lou96], Louis-Maass [LM90]. The well-known inversion of
the Radon transform is considered a model case for inversion. Finally we
consider a 3D x-ray problem and present reconstructions from real data.

2 Approximate Inverse as a Tool for Deriving Inversion
Algorithms

The integral operators appearing in medical imaging are typically compact op-
erators between suitable Hilbert spaces. The inverse operator of those compact
operators with infinite dimensional range are not continuous, which means
that the unavoidable data errors are amplified in the solution. Hence one has
to be very careful in designing inversion algorithms. They have to balance
the demand for highest possible accuracy and the necessary damping of the
influence of the unavoidable data errors. From the theoretical point of view,
exact inversion formulae are nice, but they do not take care of data errors.
The way out of this dilemma is the use of approximate inversion formulas
whose principles are explained in the following.

For approximating the solution of

Af = g
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we apply the method of approximate inverse, see Louis [Lou96]. The basic
idea works as follows: choose a so-called mollifier eγ(x, y) which, for a fixed
reconstruction point x, is a function of the variable y and which approximates
the delta distribution for the point x. The parameter γ acts as regularization
parameter. Simply think in the case of one spatial variable x of

eγ(x, y) =
1
2γ
χ[x−γ,x+γ](y)

where χΩ denotes the characteristic function of Ω. Then the mollifier fulfills∫
eγ(x, y)dy = 1 (1)

for all x and the function

fγ(x) =
∫
f(y)eγ(x, y)dy

converges for γ → 0 to f . The larger the parameter γ the larger is the interval
where the averaging takes place and hence the stronger is the smoothing. Now
solve for fixed reconstruction point x the auxiliary problem

A∗ψγ(x, ·) = eγ(x, ·) (2)

where eγ(x, ·) is the chosen approximation to the delta distribution for the
point x, and put

fγ(x) = 〈f, eγ(x, ·)〉
= 〈f,A∗ψγ(x, ·)〉 = 〈Af, ψγ(x, ·)〉 = 〈g, ψγ(x, ·)〉
=: Sγg(x) .

The operator Sγ is called the approximate inverse and ψγ is the reconstruc-
tion kernel. To be precise it is the approximate inverse for approximating the
solution f of Af = g. If we choose instead of eγ fulfilling (2.1) a wavelet,
then fγ can be interpreted as a wavelet transform of f . Wavelet transforms
are known to approximate in a certain sense derivatives of the transformed
function f , see [LMR97]. Hence this is a possibility to find jumps in f as used
in contour reconstructions, see [LM93, Lou96].
The advantage of this method is that ψγ can be pre-computed independently
of the data. Furthermore, invariances and symmetries of the operator A∗ can
directly be transformed into corresponding properties of Sγ as the follow-
ing consideration shows, see Louis [Lou96]. Let T1 and T2 be two operators
intertwining with A∗

A∗T2 = T1A
∗ .

If we choose a standard mollifier E and solve A∗Ψ = E then the solution of
Eq. (2) for the special mollifier eγ = T1E is given as
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ψγ = T2Ψ .

As an example we mention, that if A∗ is translation invariant; i.e., T1f(x) =
T2f(x) = f(x−a), then also the reconstruction kernel is translation invariant.

Sometimes it is easier to cheque these conditions for A itself. Using AT ∗1 =
T ∗2A we get the above relations by using the adjoint operators.

This method is presented in [Lou99] as general regularization scheme to
solve inverse problems. Generalizations are also given. The application to vec-
tor fields is derived by Schuster [Sch00].

If the auxiliary problem is not solvable then its minimum norm solution leads
to the minimum norm solution of the original problem.

3 Inversion of the Radon Transform

We apply the above approach to derive inversion algorithms for the Radon
transform. This represents a typical behaviour for all linear imaging problems.
The Radon transform in IRN is defined as

Rf(θ, s) =
∫

IRN

f(x)δ(s− x>θ) dx

for unit vectors θ ∈ SN−1 and s ∈ IR. Its inverse is

R−1 = cNR∗I1−N (3)

where R∗ is the adjoint operator from L2 to L2, also called the backprojection,
defined as

R∗g(x) =
∫

SN−1
g(θ, x>θ)dθ ,

Iα is the Riesz potential defined via the Fourier transform as

̂(Iαg)(ξ) = |ξ|−αĝ(ξ),

acting on the second variable of Rf and the constant

cN =
1
2
(2π)1−N .

see e.g. [Nat86]. We start with a mollifier eγ(x, ·) for the reconstruction point
x and get
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R∗ψγ(x, ·) = eγ(x, ·)
= cNR∗I1−NReγ(x, ·)

leading to
ψγ(x; θ, s) = cNI

1−NReγ(x; θ, s) .

The Radon transform for fixed θ is translational invariant; i.e., if we denote
by Rθf(s) = Rf(θ, s), then

RθT
a
1 f = T a>θ

2 Rθf

with the shift operators T a
1 f(x) = f(x− a) and T t

2g(s) = g(s− t). If we chose
a mollifier ēγ supported in the unit ball centred around 0 that is shifted to x
as

eγ(x, y) = 2−N ēγ(
x− y

2
)

then also eγ is supported in the unit ball and the reconstruction kernel fulfills

ψγ(x; θ, s) =
1
2
ψ̄γ(θ,

s− x>θ

2
)

as follows from the general theory in [Lou96] and as was used for the 2D case
in [LS96].
Furthermore, the Radon transform is invariant under rotations; i.e.,

RTU
1 = TU

2 R

for the rotation TU
1 f(x) = f(Ux) with unitary U and T2

Ug(θ, s) = g(Uθ, s).
If the mollifier is invariant under rotation; i.e.,

ēγ(x) = ēγ(‖x‖)

then the reconstruction kernel is independent of θ leading to the following
observation.

Theorem 1. Let the mollifier eγ(x, y) be of the form

eγ(x, y) = 2−N ēγ(‖x− y‖/2)

then the reconstruction kernel is a function only of the variable s and the
algorithm is of filtered backprojection type

fγ(x) =
∫

Sn−1

∫
IR

ψγ(x>θ − s)Rf(θ, s)dsdθ . (4)

First references to this technique can be found in the work of Grünbaum
[DG81] and Solmon, [HS88].
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Lemma 1. The function fγ from Theorem 3.1 can be represented as a smoothed
inversion or as a reconstruction of smoothed data as

fγ = R−1
γ g = MγR−1g = R−1M̃g (5)

where
Mγf(x) = 〈f, eγ(x, ·)〉

and
M̃γg(θ, s) =

∫
IR

g(θ, t)ẽγ(s− t)dt

where
ẽγ(s) = Reγ(s)

for functions eγ fulfilling the conditions of Theorem 3.1.

4 Optimality Criteria

There are several criteria which have to be optimized. The speed of the recon-
struction is an essential issue. The scanning time has to be short for the sake
of the patients. In order to guarantee a sufficiently high patient throughput
the time for the reconstruction cannot slow down the whole system, it has
to be achieved in real - time. The above mentioned invariances adapted to
the mathematical model give acceptable results. But the speed itself is not
sufficient, the accuracy has to be best possible to ensure the medical diagno-
sis. This accuracy is determined by the number of data and the amount of
unavoidable noise in the data.

To optimise with respect of accuracy and noise reduction we consider the
problem in suitable Sobolev spaces Hα = Hα(IRN )

Hα = {f ∈ S′ : ‖f‖2
Hα =

∫
IRN

(1 + |ξ|2)α|f̂(ξ)|2dξ <∞}

The corresponding norm on the cylinder CN = SN−1 × IR is evaluated as

‖g‖2
Hα(CN ) =

∫
SN−1

∫
IR

(1 + |σ|2)α|ĝ(θ, σ)|2dσdθ

where the Fourier transform is computed with respect to the second variable.
We make the assumption that there is a number α > 0 such that

c1‖f‖−α ≤ ‖Af‖L2 ≤ c2‖f‖−α

for all f ∈ N(A)⊥. For the Radon transform in IRN this holds with α =
(N − 1)/2, see e.g. [Nat86, Lou84].

We assume the data to be corrupted by noise; i.e.,
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gε = Rf + n

where the true solution
f ∈ Hβ

and the noise
n ∈ Ht

with t ≤ 0. In the case of white noise, characterized by equal intensity at all
frequencies, see e.g. [Kuo, Lou89], we hence have |n̂(θ, σ)| = const and this
leads to n ∈ Ht with t < −1/2.

As mollifier we select a low-pass filter in the Fourier domain, resulting
in two dimensions in the so-called RAM - LAK - filter. Its disadvantages
are described in the next section. The theoretical advantage is that we get
information about the frequencies in the solution and hence the achievable
resolution.

This means, we select a cut-off 1/γ for γ sufficiently small and

ˆ̃eγ(σ) = (2π)−1/2χ[−1/γ,1/γ](σ)

where χA denotes the characteristic function of A.

Theorem 2. Let the true solution be f ∈ Hβ with ‖f‖β = ρ and the noise be
n ∈ Ht(CN ) with ‖n‖t = ε.

Then the total error in the reconstruction is for s < β

‖R−1
γ gε−f‖s ≤ c‖n‖(β−s)/(β−t+(N−1)/2)

t ‖f‖(s−t+(N−1)/2)/(β−t+(N−1)/2)
β (6)

when the cut-off frequency is chosen as

γ = η

(
‖n‖t

‖f‖β

)1/(β−t+(N−1)/2)

(7)

Proof. We split the error in the data error and the approximation error as

‖R−1
γ gε − f‖s ≤ ‖R−1

γ n‖s + ‖R−1
γ Rf − f‖s.

In order to estimate the data error we introduce polar coordinates and apply
the so-called projection theorem

f̂(σθ) = (2π)(1−N)/2R̂f(θ, σ) (8)

relating Radon and Fourier transform. With ̂̃Mγg = (2π)1/2 ̂̃eγ ĝ we get

‖R−1
γ n‖2

s = (2π)1−N

∫
SN−1

∫
IR

(1 + |σ|2)sσN−1| ̂RR−1
γ n|2dσdθ

= (2π)1−N

∫
SN−1

∫
IR

(1 + |σ|2)s−tσN−1(1 + |σ|2)t| ̂̃Mγn|2dσdθ

≤ (2π)1−N sup
|σ|≤1/γ

((1 + |σ|2)s−t|σ|N−1)‖n‖2
t

= (2π)1−N (1 + γ−2)s−tγ1−N‖n‖2
t

≤ (2π)1−N2s−tγ2(t−s)+1−N‖n‖2
t
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where we have used γ ≤ 1. Starting from ˆ̃eγ = Reγ we compute the Fourier
transform of eγ via the projection theorem as êγ(ξ) = (2π)−Nχ[0,1/γ](|ξ|) and
compute the approximation error as

‖R−1
γ Rf − f‖s =

∫
IRN

(1 + |ξ|2)s|f̂(ξ)|2dξ

=
∫
|ξ|≥1/γ

(1 + |ξ|2)(s−β)(1 + |ξ|2)β |f̂(ξ)|2dξ

≤ sup
|ξ|≥1/γ

(1 + |ξ|2)(s−β)‖f‖2
β

≤ γ2(β−s)‖f‖2
β

The total error is hence estimated as

‖R−1
γ gε − f‖s ≤ (2π)(1−N)/22(s−t)/2γ(t−s)+(1−N)/2‖n‖t + γ(β−s)‖f‖β

Next we minimize this expression with respect to γ where we put with a =
s− t+ (N − 1)/2 and

ϕ(γ) = c1γ
−aε+ γβ−sρ

Differentiation leads to the minimum at

γ =
(

c1aε

(β − s)ρ

)1/(β−s+a)

Inserting in ϕ completes the proof.

This result shows, that if the data error goes to zero, the cut-off goes to
infinity. It is related to the inverse of the signal-to-noise ratio.

5 The Filtered Backprojection for the Radon Transform
in 2 and 3 Dimensions

In the following we describe the derivation of the filtered backprojection, see
Theorem 3.1, for two and three dimensions. As seen in Formula (3.1) the
inverse operator of the Radon transform in IRN has the representation

R−1 = R∗B

with
B = cNI

1−N .

Hence using
e = R−1Re = R∗BRe = R∗ψ

this can easily be solved as
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ψγ = cNI
1−NReγ . (9)

As mollifier we choose a translational and rotational invariant function

ēγ(x, y) = eγ(‖x− y‖)

whose Radon transform then is a function of the variable s only. Taking the
Fourier transform of Equation (4.1) we get

ψ̂γ(σ) = cN ̂(I1−N (Reγ))(σ)

=
1
2
(2π)(1−N)/2|σ|N−1êγ(σ),

where in the last step we have used again the projection theorem

f̂(σθ) = (2π)(1−N)/2R̂θf(σ).

So, we can proceed in the following two ways. Either we prescribe the mollifier
eγ , where the Fourier transform is then computed to

êγ(σ) = σ1−N/2

∫ ∞

0

eγ(s)sN/2JN/2−1(sσ)ds

where Jν denotes the Bessel function of order ν. On the other hand we pre-
scribe

êγ(σ) = (2π)−N/2Fγ(σ)

with a suitably chosen filter Fγ leading to

ψ̂γ(σ) =
1
2
(2π)1/2−N |σ|N−1Fγ(σ).

If Fγ is the ideal low-pass; i.e., Fγ(σ) = 1 for |σ| ≤ γ and 0 otherwise, then
the mollifier is easily computed as

eγ(x, y) = (2π)−N/2γN JN/2(γ‖x− y‖)
(γ‖x− y‖)N/2

.

In the two-dimensional case the calculation of ψ leads to the so called RAM-
LAK filter, which has the disadvantage to produce ringing artefacts due to
the discontinuity in the Fourier domain.

More popular for 2D is the filter

Fγ(σ) =
{

sincσπ
2γ , |σ| ≤ γ,

0 , |σ| > γ

From this we compute the kernel ψγ by inverse Fourier transform to get for
γ = π/h where h is the stepsize on the detector; i.e., h = 1/q if we use 2q+ 1
points on the interval [−1, 1] and s = s` = `h, ` = −q, . . . , q
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ψγ(s`) =
γ2

π4

1
1− 4`2

,

known as Shepp - Logan kernel.

The algorithm of filtered backprojection is a stable discretization of the above
described method using the composite trapezoidal rule for computing the dis-
crete convolution. Instead of calculating the convolution for all points θ>x the
convolution is evaluated for equidistant points `h and then a linear interpo-
lation is applied. Nearest neighbour interpolation is not sufficiently accurate,
higher order interpolation is not bringing any improvement because the inter-
polated functions are not smooth enough. Then the composite trapezoidal rule
is used for approximating the backprojection. Here one integrates a periodic
function, hence, as shown with the Euler- Maclaurin summation formula, this
formula is highly accurate. The filtered backprojection then consists of two
steps. Let the data Rf(θ, s) be given for the directions θj = (cosϕj , sinϕj),
ϕj = π(j−1)/p, j = 1, ..., p and the values sk = kh, h = 1/q and k = −q, ..., q.

Step 1: For j=1,...,p, evaluate the discrete convolutions

vj,` = h

q∑
k=−q

ψγ(s` − sk)Rf(θj , sk), ` = −q, ..., q. (10)

Step 2: For each reconstruction point x compute the discrete backprojection

f̃(x) =
2π
p

p∑
j=1

(
(1− η)vj,` + ηvj,`+1 (11)

where, for each x and j, ` and η are determined by

s = θ>j x, ` ≤ s/h < `+ 1, η = s/h− `

see e.g. [Nat86].

In the three - dimensional case we can use the fact, that the operator I−2

is local,

I−2g(θ, s) =
∂2

∂s2
g(θ, s)

If we want to keep this local structure in the discretization we choose

Fγ(σ) = 2(1− cos(hσ))/(hσ)2

leading to
ψγ(s) = (δγ − 2δ0 + δ−γ) (s) (12)

Hence, the application of this reconstruction kernel is nothing but the central
difference quotient for approximating the second derivative. The correspond-
ing mollifier then is
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eγ(y) =
{

(2π)−1h−2|y|−1 , for |y| < h,
0 , otherwise,

see [Lou83]. The algorithm has the same structure as mentioned above for the
2D case.

In order to get reconstruction formulas for the fan beam geometry coordinate
transforms can be used, the structure of the algorithms does not change.

6 Inversion Formula for the 3D Cone Beam Transform

In the following we consider the X-ray reconstruction problem in three di-
mensions when the data is measured by firing an X-ray tube emitting rays
to a 2D detector. The movement of the combination source - detector deter-
mines the different scanning geometries. In many real - world applications the
source is moved on a circle around the object. From a mathematical point of
view this has the disadvantage that the data are incomplete, the condition
of Tuy-Kirillov is not fulfilled. This condition says, that essentially the data
are complete for the three - dimensional Radon transform. More precisely, all
planes through a reconstruction point x have to cut the scanning curve Γ . We
base our considerations on the assumptions that this condition is fulfilled, the
reconstruction from real data nevertheless is then from the above described
circular scanning geometry, because other data is not available to us so far.

A first theoretical presentation of the reconstruction kernel was given by Finch
[Fin87], invariances were then used in the group of the author to speed-up
the computation time considerably, so that real data could be handled, see
[Lou03]. See also the often used algorithm from Feldkamp et al. [FDK84]
and the contribution of Defrise and Clack [DC94]. The approach of Katsevich
[Kat02] differs from our approach that he avoids the Crofton symbol by re-
stricting the backprojection to a range dependent on the reconstruction point
x. An overview of the so far existing reconstruction algorithms is given by
[ZYW], it is based on a relation between the Fourier transform and the cone
beam transform, derived by Tuy, [Tuy], generalizing the so-called projection
theorem for the Radon transform, see Formula (4.3)

The presentation follows Louis [Lou06].

The mathematical model here is the so-called X-ray transform, where we de-
note with a ∈ Γ the source position, where Γ ⊂ IR3 is a curve, θ ∈ S2 is the
direction of the ray:

Df(a, θ) =
∫ ∞

0

f(a+ tθ)dt

The adjoint operator of D as mapping from L2(IR3) −→ L2(Γ × S2) is given
as
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D∗g(x) =
∫

Γ

|x− a|−2g

(
a,

x− a

|x− a|

)
da

Most attempts to find inversion formulae are based on a relation between X-
ray transform and the 3D Radon transform, the so-called Formula of Grangeat,
first published in Grangeat’s PhD thesis [Gr87], see also [Gr91] :

∂

∂s
Rf(ω, a>ω) = −

∫
S2

Df(a, θ)δ′(θ>ω)dθ.

Proof. We copy the proof from [NW01]. It consists of the following two steps.
i) We apply the adjoint operator of Rθ∫

IR

Rf(θ, s)ψ(s)ds =
∫

IR3
f(x)ψ(x>θ)dx

ii) Now we apply the adjoint operator D for fixed source position a∫
S2

Df(a, θ)h(θ)dθ =
∫

IR3
f(x)h

( x− a

|x− a|
)
|x− a|−2dx

Putting in the first formula ψ(s) = δ′(s− a>ω) and use in the second h(θ) =
δ′(θ>ω) and the fact that δ′ is homogeneous of degree −2 in IR3 then this
completes the proof.

We note the following rules for δ′:
i) ∫

S2
ψ(a>ω)δ′(θ>ω)dω = −a>θ

∫
S2∩θ⊥

ψ′(a>ω)dω

ii) ∫
S2
ψ(ω)δ′(θ>ω)dω = −

∫
S2∩θ⊥

∂

∂θ
ψ(ω)dω

Starting point is now the inversion formula for the 3D Radon transform

f(x) = − 1
8π2

∫
S2

∂2

∂s2
Rf(ω, x>ω)dω (13)

rewritten as

f(x) =
1

8π2

∫
S2

∫
IR

∂

∂s
Rf(ω, s)δ′(s− x>ω)dsdω

We assume in the following that the Tuy-Kirillov condition is fulfilled. Then
we can change the variables as: s = a>ω, n is the Crofton symbol; i.e., the
number of source points a ∈ Γ such that a>ω = x>ω, m = 1/n and get
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f(x) =
1

8π2

∫
S2

∫
Γ

(Rf)′(ω, a>ω)δ′((a− x)>ω)|a′>ω|m(ω, a>ω)dadω

= − 1
8π2

∫
S2

∫
Γ

∫
S2

Df(a, θ)δ′(θ>ω)dθδ′((a− x)>ω)|a′>ω|m(ω, a>ω)dadω

= − 1
8π2

∫
Γ

|x− a|−2

∫
S2

∫
S2

Df(a, θ)δ′(θ>ω)dθδ′(
(x− a)
|x− a|

>
ω)

×|a′>ω|m(ω, a>ω)dadω

where we again used that δ′ is homogeneous of degree −2. We now introduce
the following operators

T1g(ω) =
∫

S2
g(θ)δ′(θ>ω)dθ (14)

and we use T1 acting on the second variable as

T1,ag(ω) = T1g(a, ω) .

We also use the multiplication operator

MΓ,ah(ω) = |a′>ω|m(ω, a>ω)h(ω) . (15)

and state the following result.

Theorem 3. Let the condition of Tuy-Kirillov be fulfilled. Then the inversion
formula for the cone beam transform is given as

f = − 1
8π2

D∗T1MΓ,aT1Df (16)

with the adjoint operator D∗ of the cone beam transform and T1 and MΓ,a as
defined above.

Note that the operators D∗ and M depend on the scanning curve Γ .

This form allows for computing reconstruction kernels. To this end we have
to solve the equation

D∗ψγ = eγ

in order to write the solution of Df = g as

f(x) =< g, ψγ(x, ·) > .

In the case of exact inversion formula eγ is the delta distribution, in the case of
the approximate inversion formula it is an approximation of this distribution,
see the method of approximate inverse. Using that D−1 = − 1

8π2 D∗T1MΓ,aT1

we get
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D∗ψ = δ = − 1
8π2

D∗T1MΓ,aT1Dδ

and hence
ψ = − 1

8π2
T1MΓ,aT1Dδ (17)

We can explicitly give the form of the operators T1 and T2 = MT1. The
index at ∇ indicates the variable with respect to which the differentiation is
performed.

T1g(a, ω) =
∫

S2
g(a, θ)δ′(θ>ω)dθ

= −ω>
∫

S2∩ω⊥
∇2g(a, θ)dθ

and

T1MΓ,ah(a, α) =
∫

S2
δ′(ω>α)|a′>ω|m(ω, a>ω)h(a, ω)dω

= −a′>α
∫

S2∩α⊥
sign(a′>ω)m(ω, a>ω)h(a, ω)dω

−α>
∫

S2∩α⊥
|a′>α|∇1m(ω, a>ω)h(a, ω)dω

−a>α
∫

S2∩α⊥
|a′>ω|∇2m(a, a>ω)h(a, ω)dω

−
∫

S2∩α⊥
|a′>ω|m(ω, a>ω)

∂

∂α
h(a, ω)dω

Note that the function m is piecewise constant, the derivatives are then Delta
- distributions at the discontinuities with factor equal to the height of the
jump; i.e., 1/2.
Depending on the scanning curve Γ invariances have to be used. For the cir-
cular scanning geometry this leads to similar results as mentioned in [Lou03].
In the following we present a reconstruction from data provided by the Fraun-
hofer Institut for Nondestructive Testing (IzfP) in Saarbrücken. The detector
size was (204.8mm)2 with 5122 pixels and 400 source positions on a circle
around the object. The number of data is 10.4 million. The mollifier used is

eγ(y) = (2π)−3/2γ−3 exp
(
−1

2

∣∣∣y
γ

∣∣∣2).
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Fig. 1. Reconstruction of a surprise egg with a turtle inside.
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